Math 279 Lecture 12 Notes

Daniel Raban

October 5, 2021

1 Exponential Martingale Bounds and Geometricity of the Stratonovich Integral

1.1 Exponential martingale methods for bounding Brownian motion increments

Our purpose is showing that our candidates

$$\mathbb{B}(s,t) = \lim_{n \to \infty} \underbrace{\sum_{\substack{t_i^n \in [s,t] \\ B_n(s,t)}} B(t_i^n) \otimes B(t_i^n, t_{i+1}^n) - B(s) \otimes B(s,t),}_{\mathbb{B}_n(s,t)}$$

$$\widehat{\mathbb{B}}(s,t) = \lim_{n \to \infty} \underbrace{\sum_{\substack{t_i^n \in [s,t] \\ 0 \\ B_n(s,t)}} \frac{B(t_i^n) + B(t_{i+1}^n)}{2} \otimes B(t_i^n, t_{i+1}^n) - B(s) \otimes B(s,t)}_{\widehat{\mathbb{B}}_n(s,t)}$$

Last time, we worked out the "quadratic variation" of \mathbb{B}_n and applied the Burkholder-Davis-Gundy inequality to get the desired bound. Alternatively, we can use the socalled exponential martingale to get our bounds. The philosophy is that if we have a martingale M(t) and we want a bound, we need to control a modulus of continuity $\sup_{s \neq t, |s-t| < \delta} |M(t) - M(s)|$. Recall that if X is a centered Gaussian, $\mathbb{E}[e^{\lambda X}] = e^{(\lambda^2/2)\mathbb{E}[X^2]}$.

Proposition 1.1. If we set $X_i = B(t_i^n) - B(s)$, then

$$\mathbb{E}\left[\exp\left(\lambda \sum_{i=k}^{r-1} X_i B(t_i^n, t_{i+1}^n) - \frac{\lambda^2}{2} X_i^2(t_{i+1}^n - t_i^n)\right)\right] = 1.$$

Proof.

LHS =
$$\mathbb{E}\left[\exp\left(\lambda \sum_{i=k}^{r-2} X_i B(t_i^n, t_{i+1}^n) - \frac{\lambda^2}{2} X_i^2(t_{i+1}^n - t_i)\right) e^{\lambda X_{r-1} B(t_{r-1}^n, t_r^n) - \frac{\lambda^2}{2} X_{r-1}^2(t_r^n - t_{r-1}^n)}\right]$$

Condition on the past up to time t_{r-1}^n . The term on the right just becomes 1 because $B(t_{r-1}^n, t_r^n)$ is the only randomness.

$$= \mathbb{E}\left[\exp\left(\lambda \sum_{i=k}^{r-2} X_i B(t_i^n, t_{i+1}^n) - \frac{\lambda^2}{2} X_i^2(t_{i+1}^n - t_i)\right)\right]$$

We can do the same thing, picking off one term at a time

Remark 1.1. We may write this as

$$\mathbb{E}[e^{\lambda M_n - \frac{\lambda^2}{2}Z_n}] = 1,$$

where M_n is a martingale, and Z_n is the quadratic variation of M_n .

We wish to expand this expression in λ :

$$1 = \mathbb{E}\left[\sum_{m=0}^{\infty} K_m(M_n, Z_n) \frac{\lambda^m}{m!}\right].$$

From this we want to deduce that $K_0 = 1$ and $\mathbb{E}[K_m(M_n, Z_n)] = 0$ for all $m \ge 1$. This gives nice control on M_n in terms of its quadratic variation Z_n . Indeed, use the expansion:

$$e^{tx-\frac{t^2}{2}} = \sum_{m=0}^{\infty} (\text{He})_m(x) \frac{t^m}{m!},$$

Where $(He)_m(x)$ is the *m*-th Hermite polynomial. Hermite polynomials satisfy the recursive identity $(\text{He})_{m+1}(x) = x(\text{He})_m(x) - m(\text{He})_{m-1}(x)$. We also have $(\text{He})_m(x) = 1$ and $(\text{He})_1(x) = x$, so it is possible to show that $(\text{He})_m(0) = 0$ if m is odd. We can also show that $(He)_m$ has even powers if m is even and odd powers if m is odd. Moreover, we have the expansion (setting $t = \lambda \sqrt{Z}$ and $x = \frac{M}{\sqrt{Z}}$)

$$e^{\lambda M - \frac{\lambda^2}{2}Z} = \sum_{m=0}^{\infty} K_m(M, Z) \frac{\lambda^m}{m!}, \qquad K_m(M, Z) = (\operatorname{He})_m \left(\frac{M}{\sqrt{Z}}\right) (\sqrt{Z})^m.$$

Observe that

$$K_{2m}(M,Z) = M^{2m} + c_1^m M^{2m-2} Z + \dots + c_{m-1}^m M^2 Z^{m-1} + c_m^m Z^m$$

From this an $\mathbb{E}[K_{2m}(M, Z)] = 0$, we learn that

$$\mathbb{E}[M^{2m}] \le -\sum_{i=1}^m c_i^m \,\mathbb{E}[M^{2m-2i}Z^i].$$

Let's Schwarz this!¹ Use the weighted Schwarz inequality, $ab \leq \frac{(\varepsilon a)^p}{p} + \frac{(b/\varepsilon)^q}{q}$ to write

$$\mathbb{E}[M^{2m-2i}Z^i] \le \frac{2m-2i}{2m} (\varepsilon M^{2m-2i})^{2m/(2m-2i)} + (Z^i/\varepsilon)^{m/i} \frac{i}{m}$$
$$= \left(1 - \frac{i}{m}\right) \varepsilon^{m/(m-i)} M^{2m} + \left(\frac{1}{\varepsilon}\right)^{m/i} \frac{i}{m} Z^m.$$

From this, we deduce

$$\mathbb{E}[M^{2m}] \le c_m \,\mathbb{E}[Z^m].$$

In summary, if

$$M = M_n = \sum_{t_i^n \in [s,t]} (B_j(t_i^n) - B_j(s)) B_k(t_i^n, t_{i+1}^n), \qquad B = (B_1, \dots, B_\ell),$$

then

$$\mathbb{E}[M_n] \le c_m \, \mathbb{E}[Z_n^m],$$

where

$$Z_n = \sum_{t_i^n} B_j(s, t_i^n)^2 (t_{i+1}^n - t_i^n).$$

Recall that if $\alpha \in (0, 1/2)$ and if

$$C(B) = \sup_{\substack{s \neq t \\ s,t \in [0,T]}} \frac{|B(s,t)|}{|t-s|^{\alpha}},$$

then $\mathbb{E}[C(B)^q] < \infty$ for every $q \ge 1$ (and in fact even $\mathbb{E}[e^{c_0 C(B)}] < \infty$). Then

$$\mathbb{E}[Z_n^m] \le \mathbb{E}[C(B)^m | t - s|^{2\alpha m + m}] \le c'_m | t - s|^{2\alpha m + m}.$$

As a result,

$$\left(\mathbb{E}[M_n^{2m}]\right)^{1/(4m)} \le c'_m c_m |t-s|^{(2\alpha+1)/4}$$

In other words,

$$\|\sqrt{M_n}\|_{L^{4m}(\mathbb{P})} \le c|t-s|^{(2\alpha+1)/4}$$

and by Kolmogorov's theorem,

$$\mathbb{E}\left[\sup_{\substack{s\neq t\\s,t\in[0,T]}}\frac{|\sqrt{M}_n(s,t)|}{|t-s|^{\gamma}}\right]<\infty,$$

provided that $\gamma \in (0, \frac{2\alpha+1}{4} - \frac{1}{4m})$. By choosing *m* large and α close to 1/2, we can get any $\gamma \in (0, 1/2)$. Thus, we do have a rough path (B, \mathbb{B}) in \mathscr{R}^{γ} with $\gamma \in (0, 1/2)$. Since $\widehat{\mathbb{B}}(s,t) = \mathbb{B}(s,t) - \frac{t-s}{2}I$, the same is true for $\widehat{\mathbb{B}}$.

¹Maybe we shouldn't be using Schwarz as a verb, but this is how verbs are created.

1.2 Geometricity of the Stratonovich lift

We now claim that $\widehat{\mathbb{B}}$ is geometric and that a smooth approximation of B would lead to the Stratonovich integration. Recall that we want to solve an equation like $\dot{y} = b(y) + \sigma(y)\dot{B}$; we have two candidates for the integrals in the corresponding integral equation, as well. If we replace B by a smooth approximation $B_{\varepsilon} \xrightarrow{\varepsilon \to 0} B$, then we can solve the equation $\dot{y}_{\varepsilon} = b_{\varepsilon}(y) + \sigma_{\varepsilon}(y)\dot{B}_{\varepsilon}$ classically. Then $\lim_{\varepsilon \to 0} y_{\varepsilon} = y$, so

$$\dot{y} = b(y) + \sigma(y) \frac{d}{dt} \hat{B}$$

Thus, it will be the Stratonovich integral, not the Itô integral. Note that the regularization should be independent of the path.

To explain this, let us observe that if B is a Brownian motion and $B^{(n)}$ is the linear interpolation

$$B^{(n)}(t) = \sum_{i=0}^{\infty} \mathbb{1}_{[t_{i}^{n}, t_{i+1}^{n}]}(t) \cdot \left[\frac{t - t_{i}^{n}}{t_{i+1}^{n} - t_{i}^{n}}B(t_{i+1}^{n}) + \frac{t_{i+1}^{n} - t}{t_{i+1}^{n} - t_{i}^{n}}B(t_{i}^{n})\right],$$

then

$$\int_{s}^{t} B^{(n)}(\theta) \otimes dB^{(n)}(\theta) = \sum_{t_{i}^{n} \in [s,t]} \int_{t_{i}^{n}}^{t_{i+1}^{n}} B^{(n)}(\theta) \otimes dB^{(n)}(\theta)$$
$$= \sum_{t_{i}^{n} \in [s,t]} (t_{i+1}^{n} - t_{i}^{n}) \frac{B(t_{i}^{n}) + B(t_{i+1}^{n})}{2} \otimes \frac{B(t_{i}^{n}, t_{i+1}^{n})}{t_{i+1}^{n} - t_{i}^{n}}$$

= Stratonovich approximation.

So for $\alpha \in (0, 1/2)$,

$$\left(B^{(n)}, \int B^n \otimes dB^{(n)}\right) \xrightarrow{\mathscr{R}^{\alpha}} (B, \widehat{\mathbb{B}})$$

because we already know the L^2 -convergence, and we have established a uniform bound on \mathscr{R}^{α} of the approximation. Hence, we have convergence in \mathscr{R}^{β} for $\beta < \alpha$. **Remark 1.2.** We can have the following probabilistic interpretation for our approximation that offers another proof of the L^2 -convergence. Namely, if \mathcal{F}_n is the σ -algebra generated by $(B(t_i^n) : i = 0, 1, 2, ...)$, then $B^{(n)} = \mathbb{E}[B \mid \mathcal{F}_n]$. Then $B^{(n)} \to B$ follows from the celebrated Doob's martingale convergence theorem.