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1 Exponential Martingale Bounds and Geometricity of the
Stratonovich Integral

1.1 Exponential martingale methods for bounding Brownian motion in-
crements

Our purpose is showing that our candidates
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Last time, we worked out the “quadratic variation” of B,, and applied the Burkholder-
Davis-Gundy inequality to get the desired bound. Alternatively, we can use the so-
called exponential martingale to get our bounds. The philosophy is that if we have
a martingale M(t) and we want a bound, we need to control a modulus of continuity
SUPgtt |s—t|<s | M (t) — M(s)|. Recall that if X is a centered Gaussian, E[e*X] = eM*/DEX?],

Proposition 1.1. If we set X; = B(t]') — B(s), then
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Condition on the past up to time ¢;' ;. The term on the right just becomes 1 because

B(t!_,,t) is the only randomness.
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We can do the same thing, picking off one term at a time
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where M, is a martingale, and Z,, is the quadratic variation of M,.

We wish to expand this expression in A:
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From this we want to deduce that Ko = 1 and E[K,,(M,, Z,)] = 0 for all m > 1. This
gives nice control on M, in terms of its quadratic variation Z,. Indeed, use the expansion:

Where (He),,(x) is the m-th Hermite polynomial. Hermite polynomials satisfy the recur-
sive identity (He),,11(x) = x(He)y,(x) — m(He)y—1(x). We also have (He),,(z) = 1 and
(He)1(z) = =, so it is possible to show that (He),,(0) = 0 if m is odd. We can also show
that (He),, has even powers if m is even and odd powers if m is odd. Moreover, we have

the expansion (setting ¢t = \V/Z and x = %)
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Observe that
Kom(M,Z) = M*™ 4 P MP™" 27 o ¢ M2 2 4 ez,

From this an E[K»,, (M, Z)] = 0, we learn that
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Let’s Schwarz this!" Use the weighted Schwarz inequality, ab < # + % to write
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From this, we deduce

In summary, if
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Recall that if o € (0,1/2) and if
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then E[C(B)9] < oo for every ¢ > 1 (and in fact even E[e®“(P)] < 00). Then
E[Z,"] < E[C(B)™|t — s[**™*™] < ¢, [t — ™+,

As a result,
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and by Kolmogorov’s theorem,

In other words,
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provided that v € (0, 2“; L _ L), By choosing m large and « close to 1/2, we can get
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any v € (0,1/2). Thus, we do have a rough path (B,B) in #7 with v € (0,1/2). Since
B(s,t) = B(s,t) — 5521, the same is true for B.

!'Maybe we shouldn’t be using Schwarz as a verb, but this is how verbs are created.



1.2 Geometricity of the Stratonovich lift

We now claim that B is geometric and that a smooth approximation of B would lead to the
Stratonovich integration. Recall that we want to solve an equation like § = b(y) + o(y)B;
we have two candidates for the integrals in the corresponding integral equation, as well.
If we replace B by a smooth approximation B, =0, B, then we can solve the equation
Ue = be(y) + 02 (y)BE classically. Then lim._,gy. = ¥y, so

~

§ = b(y) + o) 5 B.

Thus, it will be the Stratonovich integral, not the It6 integral. Note that the regularization
should be independent of the path.

To explain this, let us observe that if B is a Brownian motion and B is the linear
interpolation
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= Stratonovich approximation.
So for a € (0,1/2),
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because we already know the L?-convergence, and we have established a uniform bound
on Z* of the approximation. Hence, we have convergence in % for § < a.



Remark 1.2. We can have the following probabilistic interpretation for our approximation
that offers another proof of the L?-convergence. Namely, if F,, is the o-algebra generated
by (B(t?) : i = 0,1,2,...), then B™ = E[B | F,]. Then B™ — B follows from the
celebrated Doob’s martingale convergence theorem.
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